Modular exponentiation via the explicit Chinese remainder theorem

نویسندگان

  • Daniel J. Bernstein
  • Jonathan P. Sorenson
چکیده

Fix pairwise coprime positive integers p1, p2, . . . , ps. We propose representing integers u modulo m, where m is any positive integer up to roughly √ p1p2 · · · ps, as vectors (u mod p1, u mod p2, . . . , u mod ps). We use this representation to obtain a new result on the parallel complexity of modular exponentiation: there is an algorithm for the Common CRCW PRAM that, given positive integers x, e, and m in binary, of total bit length n, computes x mod m in time O(n/lg lg n) using nO(1) processors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Timing Attack against RSA with the Chinese Remainder Theorem

We introduce a new type of timing attack which enables the factorization of an RSA-modulus if the exponentiation with the secret exponent uses the Chinese Remainder Theorem and Montgomery’s algorithm. Its standard variant assumes that both exponentiations are carried out with a simple square and multiply algorithm. However, although its efficiency decreases, our attack can also be adapted to mo...

متن کامل

A Sublinear-Time Parallel Algorithm for Integer Modular Exponentiation

The modular exponentiation problem is, given integers x; a; m with m > 0, compute x a mod m. Let n denote the sum of the lengths of x, a, and m in binary. We present a parallel algorithm for this problem that takes O(n= log log n) time on the common CRCW PRAM using O(n 2+) processors. This algorithm is based on Bernstein's Explicit Chinese Remainder Theorem combined with a fast method for paral...

متن کامل

A New Fast Modular Multiplication Method and Its Application to Modular Exponentiation-Based Cryptography

In order to apply exponentiation-based cryptography, such as RSA cryptography and El Gamal cryptography, to a wide range of practical problems, it is desired to devise faster ciphering and deciphering processes. This paper proposes a new algorithm for improving the speed of the exponentiation-based computation. The proposed method is based on the idea in the exponentiation computation that the ...

متن کامل

VLSI Design of RSA Cryptosystem Based on the Chinese Remainder Theorem

This paper presents the design and implementation of a systolic RSA cryptosystem based on a modified Montgomery’s algorithm and the Chinese Remainder Theorem (CRT) technique. The CRT technique improves the throughput rate up to 4 times in the best case. The processing unit of the systolic array has 100% utilization because of the proposed block interleaving technique for multiplication and squa...

متن کامل

The Chinese Remainder Theorem and its Application in a High-Speed RSA Crypto Chip

The performance of RSA hardware is primarily determined by an efficient implementation of the long integer modular arithmetic and the ability to utilize the Chinese Remainder Theorem (CRT) for the private key operations. This paper presents the multiplier architecture of the RSA crypto chip, a high-speed hardware accelerator for long integer modular arithmetic. The RSA multiplier datapath is re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2007